Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Muharrem Dinçer,^a* Ismail Yıldırım,^b Irfan Koca^b and Namık Özdemir^a

^aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ^bErciyes University, Arts and Sciences Faculty, Department of Chemistry, 38039 Kayseri, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.045 wR factor = 0.090 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

3,5-Bis(4-methylbenzoyl)-2,6-bis(4methylphenyl)-4*H*-pyran-4-one

The title compound, $C_{35}H_{28}O_4$, is a tetrasubstituted 4*H*-pyran-4-one with 2,6-bis(*p*-tolyl) and 3,5-bis(*p*-tolyl) substituents. The pyran ring is almost planar; the planes of the tolyl substituents are approximately orthogonal to the pyran mean plane [both dihedral angles are equal to 86.2 (1)°], whereas the tolyl planes form with the latter much smaller dihedral angles of 32.5 (1) and 47.2 (1)°. The crystal structure features two intramolecular C–H···O contacts and a C–H··· π (ring) interaction, with an H···*Cg* distance of 2.70 (3) Å (*Cg* is the centroid of one of the benzene rings).

Comment

The derivatives of the 4*H*-pyran-4-one heterocyclic system, also known as 4- or γ -pyrones, are usually quite stable crystalline compounds. It is noteworthy, however, that there are relatively few derivatives of non-fused pyrone among natural products, in contrast to the widespread occurrence of benzo-pyrone derivatives, also known as coumarins and chromones (Joule *et al.*, 1995). 4*H*-Pyran-4-ones and their various derivatives have been the subject of extensive studies because of their importance for a number of applications as well as their widespread biological significance (Kitagawa *et al.*, 1991; Zamocka *et al.*, 1991; Bransova *et al.*, 1995; Lowe *et al.*, 1997; Wakabayashi & Natori, 1999).

Received 11 December 2003 Accepted 5 January 2004 Online 17 January 2004

Figure 1

An ORTEP-3 (Farrugia, 1997) drawing of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Compound (I) represents a tetrasubstituted-4H-pyran-4one with 2,6-bis(p-tolyl) and 3,5-bis(p-toluyl) substituents (Fig. 1). The pyran ring O1/C1–C5 is planar within 0.025 Å; the mean planes of toluyl substituents C6/O4/C7-C12/C35 and C25/O2/C26-C32 are approximately orthogonal to the pyran plane [both dihedral angles are equal to 86.2 $(1)^{\circ}$], whereas the tolyl planes C13-C18/C34 and C19-C24/C33 form with the latter much smaller dihedral angles of 32.5(1) and $47.2(1)^{\circ}$, respectively. Bond lengths and angles in the pyran ring are in good agreement with those reported in the literature for pyrans (Zhang et al., 2003).

There are two weak intramolecular C-H···O contacts in the molecule of (I) (Table 2). Relatively short intermolecular distances between atom H27 and the atoms of the C13-C18 aromatic ring, as well as the peculiar orientation of the C27-H27 bond with respect to this ring, suggest the existence of a $C-H\cdots\pi$ interaction, which may play a significant role in the packing of the crystal (see Table 2). The packing of the molecules in the crystal is shown in Fig. 2.

Experimental

Dry 4-(4-methylbenzoyl)-5-(4-methylphenyl)furan-2,3-dione (0.50 g, 1.63 mmol), readily available from di-(p-methylbenzoyl)methane and oxalyl chloride using a method similar to that reported by Ziegler et al. (1967) and Saalfrank et al. (1991), was heated to 448 K for 30-40 min. The residue was cooled to room temperature, triturated with ether, and then filtered and recrystallized from 1-butanol to give white crystals of (I) (yield 0.23 g, 55%; m.p. 520 K).

Crystal data

C35H28O4	$D_x = 1.251 \text{ Mg m}^{-3}$
$M_r = 512.57$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 7653
a = 10.8893 (10) Å	reflections
b = 10.6093 (7) Å	$\theta = 1.7-24.1^{\circ}$
c = 23.629 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 94.297 \ (7)^{\circ}$	T = 293 (2) K
V = 2722.1 (4) Å ³	Prism, yellow
Z = 4	$0.32 \times 0.26 \times 0.13 \text{ mm}$

Figure 2

An ORTEP-3 (Farrugia, 1997) plot of the crystal packing of the title compound.

 $R_{\rm int} = 0.085$ $\theta_{\rm max} = 25.0^{\circ}$

 $h = -11 \rightarrow 12$

 $k = -12 \rightarrow 12$

 $l = -28 \rightarrow 28$

Data collection

Stoe IPDS-2 diffractometer	
ρ scans	
Absorption correction: none	
24 172 measured reflections	
4785 independent reflections	
2115 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0246P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.090$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.01	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
4785 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
417 parameters	Extinction correction: SHELXL97
H atoms treated by a mixture of	Extinction coefficient: 0.0137 (7)
independent and constrained	
refinement	

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.367 (3)	C2-C3	1.451 (3)
O1-C5	1.380 (2)	C2-C25	1.498 (3)
O2-C25	1.221 (3)	C3-C4	1.452 (3)
O3-C3	1.242 (2)	C4-C5	1.338 (3)
O4-C6	1.216 (3)	C4-C6	1.500 (3)
C1-C2	1.342 (3)	C5-C13	1.472 (3)
C1-C19	1.475 (3)		
C1-O1-C5	120.41 (18)	C5-C4-C3	120.9 (2)
C2-C1-O1	121.5 (2)	C4-C5-O1	121.0 (2)
C1-C2-C3	120.7 (2)	O4-C6-C7	122.3 (2)
O3-C3-C2	122.1 (2)	O4-C6-C4	121.4 (2)
O3-C3-C4	122.5 (2)	O2-C25-C26	121.4 (3)
C2-C3-C4	115.4 (2)	O2-C25-C2	119.2 (3)

Table 2

Hydrogen-bonding geometry (Å, °).

Cg3 denotes the centroid of the C13-C18 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C14-H14\cdots O4$ $C20-H20\cdots O2$ $C27-H27\cdots Cg3^{i}$	1.00 (2)	2.36 (2)	3.210 (3)	143.2 (19)
	0.92 (2)	2.56 (2)	3.216 (4)	129.1 (18)
	1.11 (3)	2.70 (3)	3.792 (3)	169 (2)

Symmetry code: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$.

The components of the anisotropic displacement parameters in the direction of the bond were restrained during the final refinement to be 0.01 Å². H atoms, except those belonging to methyl groups, were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The C-H distances are in the range 0.90 (3)–1.11 (3) Å. H atoms belonging to the methyl groups were positioned geometrically (C-H = 0.96 Å) and included in the subsequent refinement in the riding model approximation [$U_{iso}(-U_{eq}(\text{methyl C})]$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported financially by the Research Center of Ondokuz Mayıs University and the Research Center of Erciyes University.

References

- Bransova, J., Brtko, J., Uher, M. & Movotny, L. (1995). Int. Biochem. Cell Biol. 27, 701–706; Chem. Abstr. 123, 187959t.
- Clemens, R. J. & Hyatt, J. A. (1985). J. Org. Chem. 50, 2431-2439.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Hökelek, T., Sarıp.inar, E., Yıldırım, İ., Akkurt, M. & Akçamur, Y. (2002). Acta Cryst. E58, 030–032.
- Janoschek, R., Fabian, W. M. F. & Kollenz, G. (1994). J. Comput. Chem. 15, 132–143.
- Joule, J. A., Mills, K. & Smith, G. F. (1995). *Heterocyclic Chemistry*, 3rd ed., pp. 148–162. London: Chapman and Hall.
- Kitagawa, M., Yamamoto, K., Katakura, S., Kanno, H., Yamada, K., Nagahara, T. & Tanaka, M. (1991). *Chem. Pharm. Bull.* **39**, 2681–2690; *Chem. Abstr.* (1992). **116**, 106034t.
- Kollenz, G., Kappe, C. O. & El-Nabi, H. A. A. (1991). *Heterocycles*, **32**, 669–674.
- Lowe, W., Bratter, S., Dietlich, C., Weber, M. & Luger, P. (1997). J. Heterocycl. Chem. 34, 1173–1178.
- Saalfrank, R. W., Lutz, T., Hörner, B., Gündel, J., Peters, K. & von Schnering, H. G. (1991). Chem. Ber. 124, 2289–2295.
- Sarıpınar, E., Güzel, Y., Önal, Z., İlhan, İ. Ö. & Akçamur, Y. (2000). J. Chem. Soc. Pakistan, 22, 308–317.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stadler, A., Zangger, K., Belaj, F. & Kollenz, G. (2001). Tetrahedron, 57, 6757– 6763.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Toung, R. L. & Wentrup, C. (1992). Tedrahedron Lett. 48, 7641-7654.
- Wakabayashi, F. H. & Natori, Y. (1999). Jpn Kokai Tokkyo JP, 02 273 140; Chem. Abstr. (1991). 114, 80308s.
- Yıldırım, İ. & İlhan, İ. Ö. (1997). J. Heterocycl. Chem. 34, 1047-1051.
- Yıldırım, İ. & Koca, İ. (2004). Asian J. Chem. 16. In the press.
- Zamocka, J., Misikova, E. & Durinda, J. (1991). *Pharmazie*, **46**, 610; *Chem. Abstr.* (1992). **116**, 106031q.
- Zhang, Y., Yuan, F., Xu, J., Wu, Q. & Huang, Z. (2003). J. Chem. Crystallogr. 33, 165–168.
- Ziegler, E., Eder, M., Belegratis, C. & Prewedourakis, E. (1967). *Monatsh. Chem.* **98**, 2249–2251.