Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Muharrem Dinçer, ${ }^{\text {a* }}$ Ismail
 Yildırım, ${ }^{\text {b }}$ Irfan Koca ${ }^{\text {b }}$ and Namık Özdemir ${ }^{\text {a }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Erciyes University, Arts and Sciences Faculty, Department of Chemistry, 38039 Kayseri, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.090$
Data-to-parameter ratio $=11.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3,5-Bis(4-methylbenzoyl)-2,6-bis(4-methylphenyl)-4H-pyran-4-one

The title compound, $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{O}_{4}$, is a tetrasubstituted 4 H -pyran4 -one with 2,6 -bis(p-tolyl) and $3,5-\operatorname{bis}(p$-toluyl) substituents. The pyran ring is almost planar; the planes of the toluyl substituents are approximately orthogonal to the pyran mean plane [both dihedral angles are equal to $86.2(1)^{\circ}$], whereas the tolyl planes form with the latter much smaller dihedral angles of 32.5 (1) and $47.2(1)^{\circ}$. The crystal structure features two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts and a $\mathrm{C}-\mathrm{H} \cdots \pi$ (ring) interaction, with an $\mathrm{H} \cdots C g$ distance of $2.70(3) \AA(C g$ is the centroid of one of the benzene rings).

Comment

The derivatives of the $4 H$-pyran-4-one heterocyclic system, also known as 4 - or γ-pyrones, are usually quite stable crystalline compounds. It is noteworthy, however, that there are relatively few derivatives of non-fused pyrone among natural products, in contrast to the widespread occurrence of benzopyrone derivatives, also known as coumarins and chromones (Joule et al., 1995). 4H-Pyran-4-ones and their various derivatives have been the subject of extensive studies because of their importance for a number of applications as well as their widespread biological significance (Kitagawa et al., 1991; Zamocka et al., 1991; Bransova et al., 1995; Lowe et al., 1997; Wakabayashi \& Natori, 1999).

(I)

4-Aroyl-5-aryl-2,3-dihydro-2,3-furandiones represent easily accessible buiding blocks for the synthesis of heterocyclic systems (Kollenz et al., 1991; Sarıpınar et al., 2000; Hökelek et al., 2002). It is known that thermal decomposition of the 2,3-dihydro-2,3-furandiones leads to to the formation of highly reactive diacylketene intermediates (Toung \& Wentrup, 1992; Janoschek et al., 1994; Yıldırım \& İlhan, 1997; Stadler et al., 2001). In particular, the thermolysis of 4-(4-methylbenzoyl)-5-(4-methylphenyl)furan-2,3-dione at 448 K results in elimination of CO and formation of the intermediate ditoluylketene. In the absence of nucleophiles or suitable dienophiles, dimerization of acylketenes takes place as a special case of the hetero-Diels-Alder cycloaddition reaction (Clemens \& Hyatt, 1985). In these reactions, the acylketene generally dimerizes and, after elimination of CO_{2}, gives the γ-pyrone derivative as a final stable product (Yıldırım \& Koca, 2004). Under these conditions, the above mentioned ditoluylketene produces the title compound, (I), whose synthesis and structure are reported in the present paper.

Received 11 December 2003
Accepted 5 January 2004
Online 17 January 2004

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of the title compound, showing the atomic numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Compound (I) represents a tetrasubstituted-4H-pyran-4one with 2,6 -bis (p-tolyl) and 3,5 -bis(p-toluyl) substituents (Fig. 1). The pyran ring O1/C1-C5 is planar within $0.025 \AA$; the mean planes of toluyl substituents C6/O4/C7-C12/C35 and C25/O2/C26-C32 are approximately orthogonal to the pyran plane [both dihedral angles are equal to $86.2(1)^{\circ}$], whereas the tolyl planes C13-C18/C34 and C19-C24/C33 form with the latter much smaller dihedral angles of 32.5 (1) and 47.2 (1) $)^{\circ}$, respectively. Bond lengths and angles in the pyran ring are in good agreement with those reported in the literature for pyrans (Zhang et al., 2003).

There are two weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts in the molecule of (I) (Table 2). Relatively short intermolecular distances between atom H 27 and the atoms of the C13-C18 aromatic ring, as well as the peculiar orientation of the $\mathrm{C} 27-$ H 27 bond with respect to this ring, suggest the existence of a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, which may play a significant role in the packing of the crystal (see Table 2). The packing of the molecules in the crystal is shown in Fig. 2.

Experimental

Dry 4-(4-methylbenzoyl)-5-(4-methylphenyl)furan-2,3-dione (0.50 g , $1.63 \mathrm{mmol})$, readily available from di-(p-methylbenzoyl)methane and oxalyl chloride using a method similar to that reported by Ziegler et al. (1967) and Saalfrank et al. (1991), was heated to 448 K for $30-40$ min . The residue was cooled to room temperature, triturated with ether, and then filtered and recrystallized from 1-butanol to give white crystals of (I) (yield $0.23 \mathrm{~g}, 55 \%$; m.p. 520 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{35} \mathrm{H}_{28} \mathrm{O}_{4} \\
& M_{r}=512.57 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=10.8893(10) \AA \\
& b=10.6093(7) \AA \\
& c=23.629(2) \AA \\
& \beta=94.297(7)^{\circ} \\
& V=2722.1(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

An ORTEP-3 (Farrugia, 1997) plot of the crystal packing of the title compound.

Data collection

Stoe IPDS-2 diffractometer

φ scans

Absorption correction: none
24172 measured reflections
4785 independent reflections

$$
\begin{aligned}
& R_{\text {int }}=0.085 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-11 \rightarrow 12 \\
& k=-12 \rightarrow 12
\end{aligned}
$$

$$
2115 \text { reflections with } I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.090$
$S=1.01$
4785 reflections
417 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0246 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.16 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0137 (7)

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	$1.367(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.451(3)$
O1-C5 $20-\mathrm{C} 5$	$1.498(3)$		
O2-C25	$1.380(2)$	$\mathrm{C} 2-\mathrm{C}$	$1.452(3)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.221(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.338(3)$
$\mathrm{O} 4-\mathrm{C} 6$	$1.242(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.500(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.216(3)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.472(3)$
$\mathrm{C} 1-\mathrm{C} 19$	$1.342(3)$	$\mathrm{C} 5-\mathrm{C} 13$	
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5$	$1.475(3)$		$120.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$120.41(18)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.0(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.5(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$122.3(2)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$120.7(2)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 7$	$121.4(2)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$122.1(2)$	$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 4$	$121.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$122.5(2)$	$\mathrm{O} 2-\mathrm{C} 25-\mathrm{C} 26$	$119.2(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.
$C g 3$ denotes the centroid of the $\mathrm{C} 13-\mathrm{C} 18$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C14-H14...O4	1.00 (2)	2.36 (2)	3.210 (3)	143.2 (19)
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{O} 2$	0.92 (2)	2.56 (2)	3.216 (4)	129.1 (18)
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{Cg} 3{ }^{\text {i }}$	1.11 (3)	2.70 (3)	3.792 (3)	169 (2)

[^0]The components of the anisotropic displacement parameters in the direction of the bond were restrained during the final refinement to be $0.01 \AA^{2}$. H atoms, except those belonging to methyl groups, were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The $\mathrm{C}-\mathrm{H}$ distances are in the range 0.90 (3)-1.11 (3) A. H atoms belonging to the methyl groups were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and included in the subsequent refinement in the riding model approximation [$U_{\text {iso }}(-$ $U_{\text {eq }}$ (methyl C)].

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported financially by the Research Center of Ondokuz Mayıs University and the Research Center of Erciyes University.

References

Bransova, J., Brtko, J., Uher, M. \& Movotny, L. (1995). Int. Biochem. Cell Biol. 27, 701-706; Chem. Abstr. 123, 187959t.
Clemens, R. J. \& Hyatt, J. A. (1985). J. Org. Chem. 50, 2431-2439.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Hökelek, T., Sarıp.inar, E., Yıldırım, İ., Akkurt, M. \& Akçamur, Y. (2002). Acta Cryst. E58, o30-o32.
Janoschek, R., Fabian, W. M. F. \& Kollenz, G. (1994). J. Comput. Chem. 15, 132-143.
Joule, J. A., Mills, K. \& Smith, G. F. (1995). Heterocyclic Chemistry, 3rd ed., pp. 148-162. London: Chapman and Hall.
Kitagawa, M., Yamamoto, K., Katakura, S., Kanno, H., Yamada, K., Nagahara, T. \& Tanaka, M. (1991). Chem. Pharm. Bull. 39, 2681-2690; Chem. Abstr. (1992). 116, 106034t.

Kollenz, G., Kappe, C. O. \& El-Nabi, H. A. A. (1991). Heterocycles, 32, 669674.

Lowe, W., Bratter, S., Dietlich, C., Weber, M. \& Luger, P. (1997). J. Heterocycl. Chem. 34, 1173-1178.
Saalfrank, R. W., Lutz, T., Hörner, B., Gündel, J., Peters, K. \& von Schnering, H. G. (1991). Chem. Ber. 124, 2289-2295.

Sarıpınar, E., Güzel, Y., Önal, Z., İlhan, İ. Ö. \& Akçamur, Y. (2000). J. Chem. Soc. Pakistan, 22, 308-317.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stadler, A., Zangger, K., Belaj, F. \& Kollenz, G. (2001). Tetrahedron, 57, $6757-$ 6763.

Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Toung, R. L. \& Wentrup, C. (1992). Tedrahedron Lett. 48, 7641-7654.
Wakabayashi, F. H. \& Natori, Y. (1999). Jpn Kokai Tokkyo JP, 02273 140; Chem. Abstr. (1991). 114, 80308s.
Yıldırım, İ. \& İlhan, İ. Ö. (1997). J. Heterocycl. Chem. 34, 1047-1051.
Yıldırım, İ. \& Koca, İ. (2004). Asian J. Chem. 16. In the press.
Zamocka, J., Misikova, E. \& Durinda, J. (1991). Pharmazie, 46, 610; Chem. Abstr. (1992). 116, 106031q.
Zhang, Y., Yuan, F., Xu, J., Wu, Q. \& Huang, Z. (2003). J. Chem. Crystallogr. 33, 165-168.
Ziegler, E., Eder, M., Belegratis, C. \& Prewedourakis, E. (1967). Monatsh. Chem. 98, 2249-2251.

[^0]: Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

